## **Exercise 4A Point to nearest point:**

- 1. From folder Exercise 4 load
  - African Countries
  - Landing\_Stations
  - Cables
- 2. Check CRS
- 3. Calculate Centroids

Vector|Geometry Tools | Polygon Centroids





- 4. Save new Layer as African\_centroids
- 5. Use the "Distance to nearest hub" tool to find the nearest point on the nearest landing station.

Processing | Search for "Distance to nearest hub"

| Source points layer          African_centroids [EPSG:4326] <ul> <li></li> <li>Destination hubs layer</li> <li>Landing_Stations [EPSG:4326]</li> <li>Destruction and attribute</li> <li>Hub layer name attribute</li> <li>African_centroids [EPSG:4326]</li> <li>African_centroids [EPSG:4326]</li></ul> | Given a layer with source point and<br>another one representing destination<br>points, this algorithm computes the<br>distance between each source point and<br>the closest detination one.<br>The resulting layer can contain only<br>source points with an additional field |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Country   Output shape type   Line to hub   Measurement unit   Kilometers   Hub distance   [Create temporary layer]     Open output file after running algorithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | indicating the distance to the nearest poi<br>and the name of the destination point, or<br>lines linking each source point with its<br>nearest destination point.                                                                                                             |

# 6. This creates the new layer "Hub distance"



- 7. Check the attribute Table of Hub Distance. Does it contain all the information we need?
- 8. Use the NNjoin plugin

| • | 0  | NNJoin                                                                |
|---|----|-----------------------------------------------------------------------|
|   | In | put vector layer                                                      |
|   | (  | African_centroids_Landing_Stations                                    |
|   | Jo | in vector layer                                                       |
|   |    | African_centroids_Landing_Stations                                    |
|   |    | Join prefix: join_                                                    |
|   | 0  | utput layer                                                           |
|   |    | African_centroids_Landing_Stations_African_centroids_Landing_Stations |
|   |    | Neighbour distance field: distance                                    |
|   | (  | Cancel Close OK Help                                                  |
|   |    |                                                                       |

9. Check the attribute table.

### **DIY Exercise 4B Distance Matrix:**

1. From folder Exercise 4 load

- KEN\_adm2

- 2. Generate Centroids
- 3. Save Centroid Layer
- 4. Calculate Distance Matrix

Vector | Analysis Tools | Distance Matrix

Note (Distance is in degrees) You could multiply distance in degrees by 111. This is the conversion rate between degrees and kilometres at the equator.

# **Exercise 4C Point to nearest polyline:**

- 1. From folder Exercise 4 load
  - African Countries
  - 10m coastline



2. Convert Coastline polylines to points. Processing | Search for "Convert lines to points



3. Use Distance to Hub tool



4. We only need the points on the coast that are the nearest to the respective country's capital.



#### 5. Zoom in



6. Save as "Africa\_coast\_nearest"

Save only selected features

7. Add coordinates of each point (required if you want to calculate distance to Slave Trade centers later on, in stata?)

Vector | Geometry Tools | Export/Add Geometry Tools

8. Use NNjoin to join information from the country\_centroids

| • • •                             | 🕺 NNJoin                                |
|-----------------------------------|-----------------------------------------|
| Input vector layer                |                                         |
| Hub distance                      | Geometry type: LineString Selected only |
| Approximate geometries by cent    | roids                                   |
| Join vector layer                 |                                         |
| Africa_coast_nearest              | Geometry type: Point Selected only      |
| ✓ Use index                       | Join prefix: join_                      |
| Output layer                      |                                         |
| Hub distance_Africa_coast_nearest | t                                       |
| Neig                              | hbour distance field: distance          |
|                                   |                                         |
|                                   | Cancel Close OK Help                    |
|                                   |                                         |

9. Save layer.

### **Exercise 4D Buffer:**

- 1. From folder Exercise 4 load
  - Kenya Schools
- 2. Change CRS to projected CRS WGS 1984 / UTM 36 N

Find fitting UTM zone for your area here <a href="http://www.dmap.co.uk/utmworld.htm">http://www.dmap.co.uk/utmworld.htm</a>

Save Layer and Change CRS

Change CRS of the Project as well

3. Vector | Geoprocessing Tools | Fixed Distance Buffer

|                                                                        | 🕺 Fixed distance buffer |                                                                                                             |
|------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------|
| Parameters Log                                                         | Run as batch process    | Fixed distance buffer                                                                                       |
| Input layer                                                            | 6261                    | This algorithm computes a buffer area for<br>all the features in an input layer, using a<br>fixed distance. |
| Distance                                                               | 500j <u>v</u> V         |                                                                                                             |
| 300.000000                                                             |                         |                                                                                                             |
| Segments                                                               |                         |                                                                                                             |
| 5                                                                      | <b>\$</b>               |                                                                                                             |
| ✓ Dissolve result<br>Buffer                                            |                         |                                                                                                             |
| [Create temporary layer]                                               |                         |                                                                                                             |
| Open output file after running al<br>Open output file after running al | gorithm                 |                                                                                                             |
|                                                                        |                         |                                                                                                             |
|                                                                        |                         |                                                                                                             |
|                                                                        |                         | Close Run                                                                                                   |

Create 1 Buffer with a radius of 300 and one with a radius of 1000 (in meters)



## **Exercise 4e Map Algebra – Calculating Ruggedness:**

There are many differente Terrain ruggedness measures. http://gis4geomorphology.com/roughness-topographic-position/

For this exercise we are gong to calculate the Relative Topographic Position

RTP = (DEMmean – DEMmin)/(DEMmax-DEMmin)

- 1. From folder Exercise 4 load - raster KenyaDEM
  - vector KEN\_adm2
- 2. Calculate Focal statistics using the processing tool r.neighbours

Processing | search for "r.neighbours"

| ter layer                                                                        |          |
|----------------------------------------------------------------------------------|----------|
|                                                                                  |          |
| DEM [EPSG:4326]                                                                  | <b>○</b> |
| hood operation                                                                   |          |
| )                                                                                | •        |
| hood size                                                                        |          |
|                                                                                  | ÷ •      |
| GIS 7 region extent (xmin, xmax, ymin, ymax)<br>lank to use min covering extent] |          |
| GIS 7 region cellsize (leave 0 for default)                                      |          |
| 0                                                                                | <b>.</b> |
| nced parameters                                                                  |          |
|                                                                                  |          |

Calculate 3 new raster

KenyaDEM\_min, KenyaDEM\_max, KenyaDEM\_mean

3. Use the Raster Calculator to calculate the RTP

| 10s030e_20101117_gmted_mea300@1<br>KenyaDEM_max@1 | Output layer op/GIS for Economists/KenyaTRI   |
|---------------------------------------------------|-----------------------------------------------|
| KenyaDEM_mean@1                                   | Output format GeoTIFF                         |
| Neighbors@1                                       | Current layer extent                          |
|                                                   | X min 29.99986 C XMax 59.99986                |
|                                                   | Y min -10.00014 C Y max 9.99986               |
|                                                   | Columns 3600                                  |
|                                                   | Output CRS Selected CRS (EPSG:4326, WGt )     |
|                                                   | Add result to project                         |
| Operators                                         | 0                                             |
|                                                   | ain tan lag10 (                               |
| + sqn cos                                         |                                               |
| - / ^ acos                                        | asin atan In )                                |
| < > = !=                                          | <= >= AND OR                                  |
| Pastar calculator expression                      |                                               |
|                                                   |                                               |
| "KenyaDEM_mean@1" - "KenyaDEM_mir                 | 1@1") / ("KenyaDEM_max@1" - "KenyaDEM_min@1") |
|                                                   |                                               |
|                                                   |                                               |
|                                                   |                                               |
|                                                   |                                               |

# 4 F. Viewshed Analysis (Preliminary Beta version)

Goal: Identify Areas with mobile phone coverage. Combine information about the location of Telecomm towers, their range and their height with DEM in a viewshed analysis:



- From folder Exercise 4 load

   raster KenyaDEM
   vector Kenya\_Comms\_Tower
- 2. Change Projection to WGS 84 / UTM N 36
- 3. Create Buffer with 50km radius



- Install Plugin "Viewshed Analysis"
   Plugins |Viewshed Analysis |Viewshed Analysis
   Choose observer height and search radius

| 🕨 💿 🔍 🥂 Advanced viewshed analysis       |               |              |                             |                  |
|------------------------------------------|---------------|--------------|-----------------------------|------------------|
|                                          | General       | Reference    | About                       |                  |
| Elevation raster                         |               | Outpu        | ıt file                     |                  |
| KenyaDEM_UT                              | м             | Econ<br>enya | omists/Data/k<br>_Comm_View | Kenya/K<br>shed3 |
| Observation point                        | s             |              |                             |                  |
| Kenya_Comms                              | _Tower        | <b></b>      | 0                           | Browse           |
| Target points (inte                      | rvisibility)  |              |                             |                  |
| [                                        |               | <b>2</b>     |                             |                  |
| Settings                                 |               |              |                             |                  |
| Search radius                            | 50000         | )            |                             |                  |
| Observer height                          | 10            | or field:    |                             | <b>\$</b>        |
| Target height                            | 0             | or field:    |                             | <b>•</b>         |
| Adapt to highest point at a distance of: |               |              |                             |                  |
| 0 pixe                                   | els for obser | rver 0       | pixels for ta               | arget            |
| Output                                   |               |              |                             |                  |
| <ul> <li>Binary views</li> </ul>         | hed           | 🔵 Invisit    | oility depth                |                  |
| Intervisibility                          |               |              | on OHor                     | izon full        |
| Options                                  |               |              |                             |                  |
| Cumulative                               | (for raster o | output)      |                             |                  |
| Use earth cu                             | irvature      | 0.13         | Atmospheric re              | efraction        |
| Precision                                |               | Normal       | <b>\$</b>                   |                  |
|                                          |               |              | Cancel                      | ОК               |

- 7. New output is raster.
- 8. Convert raster to vector.

Raster | Conversion | Polygonize

